کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
405418 | 677560 | 2006 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Using multiple and negative target rules to make classifiers more understandable
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
One major goal for data mining is to understand data. Rule based methods are better than other methods in making mining results comprehensible. However, current rule based classifiers make use of a small number of rules and a default prediction to build a concise predictive model. This reduces the explanatory ability of the rule based classifier. In this paper, we propose to use multiple and negative target rules to improve explanatory ability of rule based classifiers. We show experimentally that this understandability is not at the cost of accuracy of rule based classifiers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 19, Issue 6, October 2006, Pages 438–444
Journal: Knowledge-Based Systems - Volume 19, Issue 6, October 2006, Pages 438–444
نویسندگان
Jiuyong Li, Jason Jones,