کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405512 677655 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Computational properties and convergence analysis of BPNN for cyclic and almost cyclic learning with penalty
چکیده انگلیسی

Weight decay method as one of classical complexity regularization methods is simple and appears to work well in some applications for backpropagation neural networks (BPNN). This paper shows results for the weak and strong convergence for cyclic and almost cyclic learning BPNN with penalty term (CBP-P and ACBP-P). The convergence is guaranteed under certain relaxed conditions for activation functions, learning rate and under the assumption for the stationary set of error function. Furthermore, the boundedness of the weights in the training procedure is obtained in a simple and clear way. Numerical simulations are implemented to support our theoretical results and demonstrate that ACBP-P has better performance than CBP-P on both convergence speed and generalization ability.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 33, September 2012, Pages 127–135
نویسندگان
, , ,