کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405783 678031 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tag-aware recommender systems based on deep neural networks
ترجمه فارسی عنوان
سیستم های توصیه کننده برچسب بر اساس شبکه های عصبی عمیق
کلمات کلیدی
سیستم توصیهگر، اطلاعات برچسب، افزونگی، بی نظمی، شبکه های عصبی عمیق
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Many researchers have introduced tag information to recommender systems to improve the performance of traditional recommendation techniques. However, user-defined tags will usually suffer from many problems, such as sparsity, redundancy, and ambiguity. To address these problems, we propose a new recommendation algorithm based on deep neural networks. In the proposed algorithm, users׳ profiles are initially represented by tags and then a deep neural network model is used to extract the in-depth features from tag space layer by layer. In this way, representations of the raw data will become more abstract and advanced, and therefore the unique structure of tag space will be revealed automatically. Based on those extracted abstract features, users׳ profiles are updated and used for making recommendations. The experimental results demonstrate the usefulness of the proposed algorithm and show its superior performance over the clustering based recommendation algorithms. In addition, the impact of network depth on the algorithm performance is also investigated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 204, 5 September 2016, Pages 51–60
نویسندگان
, , , ,