کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4058660 | 1265728 | 2006 | 5 صفحه PDF | دانلود رایگان |

While local dynamic stability measures have been successfully used to characterize walking stability, they require long continuous walking data, which may be difficult to obtain from a clinical population. We investigated the amount of walking data necessary to obtain reliable measures of local dynamic stability. Twenty healthy adults walked on a motorized treadmill at their self-selected speed for three trials of 5 min each. Trunk motion was used to construct a 12-dimensional state space comprised of the linear and angular positions and velocities. Mean divergence of locally perturbed trajectories was calculated as a measure of local dynamic stability using the first 1–5 min of data from each trial. Exponential divergence rates were quantified. Divergence was also parameterized using a double-exponential function. Intra-class correlation coefficients ICC(2,1) were calculated for each divergence measure for each trial length. ICC(2, 1) values increased with trial length, and reached 0.5–0.9. Good reliability was obtained for short-term measures for trial lengths of 2 and 3 min, but 5 min was not adequate to estimate the long-term coefficients based on a single trial.
Journal: Gait & Posture - Volume 24, Issue 3, November 2006, Pages 386–390