کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405962 678051 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminative orthogonal elastic preserving projections for classification
ترجمه فارسی عنوان
پیش بینی های حفظ الاستیک اختیاری برای طبقه بندی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The traditional manifold learning methods can preserve the local sub-manifold structure or the global geometry effectively, such as elastic preserving projections (EPP). Many experimental results have been shown that EPP, a recently developed linear algorithm, is a strong analyzer for high-dimensional data. However, for classification problems, the traditional methods focused on the geometrical information and ignores discriminative information of different classes. In this paper, we propose a novel discriminative orthogonal elastic preserving projections (DOEPP) by imposing the discriminant information and the orthogonal constraint to improve its classification performance. DOEPP does not only preserve the elasticity of the training set, but also sufficiently utilizes the discriminant information by adding maximum margin criterion and the orthogonality of the projection matrix into its objective function. Extensive experiments on two well-known synthetic manifold data sets and four publicly available databases illustrate the effectiveness of our method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 179, 29 February 2016, Pages 54–68
نویسندگان
, , , ,