کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
405989 678055 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hybrid dual-tree complex wavelet transform and support vector machine for digital multi-focus image fusion
ترجمه فارسی عنوان
تبدیل ویولت پیچیده ترکیبی دو درخت و پشتیبانی از دستگاه بردار برای تلفیق تصویر چند فوکوس دیجیتال
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This study proposed a new method for multi-focus image fusion using hybrid wavelet and classifier. The image fusion process was formulated as a two-class classification problem: in and out-of-focus classes. First, a six-dimensional feature vector was extracted using sub-bands of dual-tree complex wavelet transform (DT-CWT) coefficients from the source images, which were then projected by a trained two-class support vector machine (SVM) to the class labels. A bacterial foraging optimization algorithm (BFOA) was developed to obtain the optimal parameters of the SVM. The output of the classification system was used as a decision matrix for fusing high-frequency wavelet coefficients from multi-focus source images in different directions and decomposition levels of the DT-CWT. After the high and low-frequency coefficients of the source images were fused, the final fused image was obtained using the inverse DT-CWT. Several existing methods were compared with the proposed method. Experimental results showed that our presented method outperformed the existing methods, in visual effect and in objective evaluation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 182, 19 March 2016, Pages 1–9
نویسندگان
, , , , , , , , ,