کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406042 678056 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A compressed sensing ensemble classifier with application to human detection
ترجمه فارسی عنوان
طبقه بندی دسته بندی حساس فشرده با استفاده از تشخیص انسان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of base classifiers. The major contributions of this paper are: (1) a new principled framework for ensemble classifier design based on compressed sensing; (2) a new concept of considering both the simplicity of ensemble classifier and irrelevance of base classifiers towards optimal classifier design; and (3) a quadratic function for CSEC optimization which includes a new optimizable positive semi-definite relevance matrix to simultaneously select appropriate base classifiers with minimized relevance. Experimental results on INRIA and SDL databases show that the performance of CSEC is better than two most popular classifiers SVM and AdaBoost, as well as a most recent method CLML.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 170, 25 December 2015, Pages 221–227
نویسندگان
, , ,