کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406155 678064 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hierarchical frame based spatial–temporal recovery for video compressive sensing coding
ترجمه فارسی عنوان
فضای سلسله مراتبی بر مبنای فضایی برای بازیابی زمانبندی برای برنامه نویسی سنسور فشرده سازی ویدیو
کلمات کلیدی
حساسیت فشرده سازی ویدئو، چارچوب ساختار سلسله مراتبی، نمایندگی فضایی و زمان کوتاه
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

In this paper, the divide-and-conquer based hierarchical video compressive sensing (CS) coding framework is proposed, in which the whole video is independently divided into non-overlapped blocks of the hierarchical frames. The proposed framework outperforms the traditional framework through the better exploitation of frames correlation with reference frames, the unequal sample subrates setting among frames in different layers and the reduction of the error propagation. At the encoder, compared with the video/frame based CS, the proposed hierarchical block based CS matrix can be easily implemented and stored in hardware. Each measurement of the block in a different hierarchical frame is obtained with the different sample subrate. At the decoder, by considering the spatial and temporal correlations of the video sequence, a spatial–temporal sparse representation based recovery is proposed, in which the similar blocks in the current frame and these recovered reference frames are organized as a spatial–temporal group unit to be represented sparsely. Finally, the recovery problem of video compressive sensing coding can be solved by adopting the split Bregman iteration. Experimental results show that the proposed method achieves better performance against many state-of-the-art still-image CS and video CS recovery algorithms.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 174, Part A, 22 January 2016, Pages 404–412
نویسندگان
, , , , , ,