کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406175 678068 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global exponential almost periodicity of a delayed memristor-based neural networks
ترجمه فارسی عنوان
تقریبا یکنواختی جهانی از شبکه های عصبی مبتنی بر ماموریتور به تاخیر افتاده است
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• Use the Filippov solution to study the dynamics of delayed memristor-based neural networks.
• Prove the existence and uniqueness of almost periodic solution of the neural network under some conditions.
• Obtain the global exponential stability of the almost periodic solution.
• Prove the existence and stability of periodic solution of delayed neural networks with periodic memristor.

In this paper, the existence, uniqueness and stability of almost periodic solution for a class of delayed memristor-based neural networks are studied. By using a new Lyapunov function method, the neural network that has a unique almost periodic solution, which is globally exponentially stable is proved. Moreover, the obtained conclusion on the almost periodic solution is applied to prove the existence and stability of periodic solution (or equilibrium point) for delayed memristor-based neural networks with periodic coefficients (or constant coefficients). The obtained results are helpful to design the global exponential stability of almost periodic oscillatory memristor-based neural networks. Three numerical examples and simulations are also given to show the feasibility of our results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 60, December 2014, Pages 33–43
نویسندگان
, , ,