کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406382 678081 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and AdaBoost algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Generalized radial basis function neural network based on an improved dynamic particle swarm optimization and AdaBoost algorithm
چکیده انگلیسی

This paper proposes an improved dynamic particle swarm optimization algorithm, which uses a new and effective exponential decreasing inertia weight (EDIW) strategy. Based on the improved EDIW-PSO algorithm together with AdaBoost algorithm, we adjust the parameters (centers, widths, shape parameters and connection weights) of GRBF and present a novel hybrid EDIW-PSO-AdaBoost-GRBF model. Two application examples are given on the proposed model. The results obtained show that the proposed model is effective and feasible for prediction problems.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 152, 25 March 2015, Pages 305–315
نویسندگان
, , ,