کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406436 678084 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF
چکیده انگلیسی

This paper presents a novel computational model to detect airports in optical remote sensing images (RSI). It works in a hierarchical architecture with a coarse layer and a fine layer. At the coarse layer, a target-oriented saliency model is built by combing the cues of contrast and line density to rapidly localize the airport candidate areas. Furthermore, at the fine layer, a learned condition random field (CRF) model is applied to each candidate area to perform the fine detection of the airport target. The CRF model is learned based on sparse features of local patches in a multi-scale structure and it also takes the contextual information of target into consideration. Therefore, its detection is more accurate and is robust to target scale variation. Comprehensive evaluations on RSI database from the Google Earth and comparisons with state-of-the-art approaches demonstrate the effectiveness of the proposed model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 164, 21 September 2015, Pages 162–172
نویسندگان
, , , , ,