کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406711 678106 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Kernel minimum error entropy algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Kernel minimum error entropy algorithm
چکیده انگلیسی

As an alternative adaptation criterion, the minimum error entropy (MEE) criterion has been receiving increasing attention due to its successful use in, especially, nonlinear and non-Gaussian signal processing. In this paper, we study the application of error entropy minimization to kernel adaptive filtering, a new and promising technique that implements the conventional linear adaptive filters in reproducing kernel Hilbert space (RKHS) and obtains the nonlinear adaptive filters in original input space. The kernel minimum error entropy (KMEE) algorithm is derived, which is essentially a generalized stochastic information gradient (SIG) algorithm in RKHS. The computational complexity of KMEE is just similar to the kernel affine projection algorithm (KAPA). We also utilize the quantization approach to constrain the network size growth, and develop the quantized KMEE (QKMEE) algorithm. Further, we analyze the mean square convergence of KMEE. The energy conservation relation is derived and a sufficient condition that ensures the mean square convergence is obtained. The performance of the new algorithm is demonstrated in nonlinear system identification and short-term chaotic time series prediction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 121, 9 December 2013, Pages 160–169
نویسندگان
, , , ,