کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406766 678111 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature subspace transfer for collaborative filtering
ترجمه فارسی عنوان
انتقال زیرسیستم ویژگی برای فیلتر کردن مشارکتی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

The sparsity problem is a major bottleneck for the collaborative filtering. Recently, transfer learning methods are introduced in collaborative filtering to alleviate the sparsity problem which aim to use the shared knowledge in related domains to help improve the prediction performance. However, most of the transfer learning methods assume that the user features or item features learned from different data matrices have the same dimensions which is often not met in practice. In this paper, we propose a transfer learning method for collaborative filtering, called Feature Subspace Transfer (FST) to overcome this limitation. In our model, the user feature subspace learned from the auxiliary data is transferred to the target domain. An iterative algorithm is also proposed for solving the optimization problem. Numerical experiments on real-world data show the improvement of our method on alleviating the sparsity problem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 136, 20 July 2014, Pages 1–6
نویسندگان
, ,