کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406816 678112 2013 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A novel two-stage weak classifier selection approach for adaptive boosting for cascade face detector
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A novel two-stage weak classifier selection approach for adaptive boosting for cascade face detector
چکیده انگلیسی

It is well-known for AdaBoost to select out the optimal weak classifier with the least sample-weighted error rate, which might be suboptimal for minimizing the naïve error rate. In this paper, a novel variant of AdaBoost named OtBoost is proposed to learn optimal thresholded node classifiers for cascade face detector. In OtBoost, a two-stage weak classifier selection approach based on adaptive boosting framework is applied to minimize both the sample-weighted error rate and the optimal-thresholded multi-set class-weighted error rate. Besides, a new sample set called selection set is also applied to prevent overfitting on the training set. Several upright frontal cascade face detectors are learned, which shows that the OtBoost strong classifiers have much better convergence ability than the AdaBoost ones with the cost of slightly worse generalization ability. Some OtBoost based cascade face detectors have acceptable performance on the CMU+MIT upright frontal face test set.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 116, 20 September 2013, Pages 122–135
نویسندگان
, , ,