کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
406971 678120 2013 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Classification of neural signals from sparse autoregressive features
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Classification of neural signals from sparse autoregressive features
چکیده انگلیسی

This paper introduces a signal classification framework that can be used for brain–computer interface design. The actual classification is performed on sparse autoregressive features. It can use any well-known classification algorithm, such as discriminant analysis, linear logistic regression and support vector machines. The autoregressive coefficients of all signals and channels are simultaneously estimated by the group lasso, and the estimation is guided by the classification performance. Thanks to the variable selection capability of the group lasso, the framework can drop individual autoregressive coefficients that are useless in the prediction stage. Also, the framework is relatively insensitive to the chosen autoregressive order. We devise an efficient algorithm to solve this problem. We test our approach on Keirn and Aunon's data, used for binary classification of electroencephalogram signals, achieving promising results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 111, 2 July 2013, Pages 21–26
نویسندگان
, , ,