کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407220 678132 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Orthogonal kernel projecting plane for radar HRRP recognition
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Orthogonal kernel projecting plane for radar HRRP recognition
چکیده انگلیسی

It is known that the subspace method is effective for radar target recognition. Its key step is to find a suitable low-dimensional subspace. In this paper, a novel subspace method, namely orthogonal kernel projecting plane (OKPP), is proposed for radar target recognition using high-resolution range profile (HRRP). The goal of OKPP is to maximize the between-class distance while minimizing the within-class distance. By introducing an orthogonality constraint into the objective function, we obtain the orthogonal basis vectors of OKPP. Comparing with the conventional kernel-based subspace methods, such as kernel principal component analysis (KPCA) and kernel Fisher discriminant analysis (KFDA), the nonlinear features extracted by OKPP reduce redundancy and improve the target recognition performance. The explicit expressions of the basis vectors of OKPP can be solved without using singular value decomposition (SVD) process, and thus reduces the computation complexity. The experimental results using measured data show that the proposed method has an encouraging performance.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 106, 15 April 2013, Pages 61–67
نویسندگان
, , , ,