کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407244 678133 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Model
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A hybrid learning algorithm for evolving Flexible Beta Basis Function Neural Tree Model
چکیده انگلیسی

In this paper, a tree-based encoding method is introduced to represent the Beta basis function neural network. The proposed model called Flexible Beta Basis Function Neural Tree (FBBFNT) can be created and optimized based on the predefined Beta operator sets. A hybrid learning algorithm is used to evolving FBBFNT Model: the structure is developed using the Extended Genetic Programming (EGP) and the Beta parameters and connected weights are optimized by the Opposite-based Particle Swarm Optimization algorithm (OPSO). The performance of the proposed method is evaluated for benchmark problems drawn from control system and time series prediction area and is compared with those of related methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 117, 6 October 2013, Pages 107–117
نویسندگان
, , , ,