کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407331 678137 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new embedding quality assessment method for manifold learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A new embedding quality assessment method for manifold learning
چکیده انگلیسی

Manifold learning is a hot research topic in the field of computer science. A crucial issue with current manifold learning methods is that they lack a natural quantitative measure to assess the quality of learned embeddings, which greatly limits their applications to real-world problems. In this paper, a new embedding quality assessment method for manifold learning, named as normalization independent embedding quality assessment (NIEQA) is proposed. Compared with current assessment methods which are limited to isometric embeddings, the NIEQA method has a much larger application range due to two features. First, it is based on a new measure which can effectively evaluate how well local neighborhood geometry is preserved under normalization, hence it can be applied to both isometric and normalized embeddings. Second, it can provide both local and global evaluations to output an overall assessment. Therefore, NIEQA can serve as a natural tool in model selection and evaluation tasks for manifold learning. Experimental results on benchmark data sets validate the effectiveness of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 97, 15 November 2012, Pages 251–266
نویسندگان
, , ,