کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407341 678137 2012 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
EOG artifact removal using a wavelet neural network
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
EOG artifact removal using a wavelet neural network
چکیده انگلیسی

In this paper, we developed a wavelet neural network (WNN) algorithm for electroencephalogram (EEG) artifact. The algorithm combines the universal approximation characteristics of neural networks and the time/frequency property of wavelet transform, where the neural network was trained on a simulated dataset with known ground truths. The contribution of this paper is two-fold. First, many EEG artifact removal algorithms, including regression based methods, require reference EOG signals, which are not always available. The WNN algorithm tries to learn the characteristics of EOG from training data and once trained, the algorithm does not need EOG recordings for artifact removal. Second, the proposed method is computationally efficient, making it a reliable real time algorithm. We compared the proposed algorithm to the independent component analysis (ICA) technique and an adaptive wavelet thresholding method on both simulated and real EEG datasets. Experimental results show that the WNN algorithm can remove EEG artifacts effectively without diminishing useful EEG information even for very noisy datasets.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 97, 15 November 2012, Pages 374–389
نویسندگان
, , , , , , , , , ,