کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407389 678140 2016 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polar support vector machine: Single and multiple outputs
ترجمه فارسی عنوان
دستگاه بردار قطبی: خروجی های تک و چند
کلمات کلیدی
طبقه بندی چند خروجی ماشین بردار پشتیبانی، سیستم مختصات قطبی، طبقه بندی غیر خطی، نظارت بر یادگیری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Support vector machine (SVM) is a popular supervised learning algorithm achieved much success in classification problems in both single output and multi-output cases. Despite this fact, SVM has some limitations, for example, in terms of the accuracy when data are not linearly separable. One of the well-known tricks for tackling this obstacle is using kernel functions in the base model of SVM which map all data into a higher or infinite dimension space called feature space. We propose polar coordinate system as an efficient technique for mapping data and improving the accuracy of SVM in some datasets. Hence, the current research is assigned to extending SVM model to polar one for single and multi-output cases. Also, the proposed SVM may be combined with kernel functions to outperform traditional non-linear SVM. The performance of the proposed model is compared with traditional one to affirm the superiority of polar SVM.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 171, 1 January 2016, Pages 118–126
نویسندگان
, ,