کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
407471 678140 2016 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
A comparative study of video-based object recognition from an egocentric viewpoint
ترجمه فارسی عنوان
یک مطالعه تطبیقی ​​از شناسایی شیء مبتنی بر ویدیو از دیدگاه خودجوش
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

سفارش تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Videos tend to yield a more complete description of their content than individual images. And egocentric vision often provides a more controllable and practical perspective for capturing useful information. In this study, we presented new insights into different object recognition methods for video-based rigid object instance recognition. In order to better exploit egocentric videos as training and query sources, diverse state-of-the-art techniques were categorised, extended and evaluated empirically using a newly collected video dataset, which consists of complex sculptures in clutter scenes. In particular, we investigated how to utilise the geometric and temporal cues provided by egocentric video sequences to improve the performance of object recognition. Based on the experimental results, we analysed the pros and cons of these methods and reached the following conclusions. For geometric cues, the 3D object structure learnt from a training video dataset improves the average video classification performance dramatically. By contrast, for temporal cues, tracking visual fixation among video sequences has little impact on the accuracy, but significantly reduces the memory consumption by obtaining a better signal-to-noise ratio for the feature points detected in the query frames. Furthermore, we proposed a method that integrated these two important cues to exploit the advantages of both.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 171, 1 January 2016, Pages 982–990
نویسندگان
,,,,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت