کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407487 678141 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An ensemble classifier based prediction of G-protein-coupled receptor classes in low homology
چکیده انگلیسی

G-protein-coupled receptors (GPCRs) play an important role in physiological processes which are the targets of more than 50% of marketed drugs. In this research, we use a hybrid approach of predicted secondary structural features (PSSF) and approximate entropy (ApEn) as the feature selection method for predicting G-protein-coupled receptors in low homology. The low homology dataset is used to validate the proposed method for its objectivity. The classification model based on the fuzzy K-nearest neighbor classifier has been utilized on the classification of membrane proteins data. In order to enhance the prediction accuracies, here we propose an ensemble classifier as the prediction engine. Compared with the previous best-performing method, the success rate is encouraging. The reliable results also demonstrate the proposed method could contribute more to the characterization of various proteomes and further utilized in neuroscience.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 154, 22 April 2015, Pages 110–118
نویسندگان
, , ,