کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407535 678146 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving the accuracy of long-term travel time prediction using heterogeneous ensembles
ترجمه فارسی عنوان
بهبود دقت پیش بینی زمان سفر طولانی با استفاده از مجموعه های ناهمگن
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

This paper is about long-term travel time prediction in public transportation. However, it can be useful for a wider area of applications. It follows a heterogeneous ensemble approach with dynamic selection. A vast set of experiments with a pool of 128 tuples of algorithms and parameter sets (a&psa&ps) has been conducted for each of the six studied routes. Three different algorithms, namely, random forest, projection pursuit regression and support vector machines, were used. Then, ensembles of different sizes were obtained after a pruning step. The best approach to combine the outputs is also addressed. Finally, the best ensemble approach for each of the six routes is compared with the best individual a&psa&ps. The results confirm that heterogeneous ensembles are adequate for long-term travel time prediction. Namely, they achieve both higher accuracy and robustness along time than state-of-the-art learners.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 150, Part B, 20 February 2015, Pages 428–439
نویسندگان
, , , ,