کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407645 678161 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bayesian model for canonical circuits in the neocortex for parallelized and incremental learning of symbol representations
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A Bayesian model for canonical circuits in the neocortex for parallelized and incremental learning of symbol representations
چکیده انگلیسی

We present a Bayesian model for parallelized canonical circuits in the neocortex, which can partition a cognitive context into orthogonal symbol representations. The model is capable of learning from infinite sensory streams, updating itself with every new instance and without having to keep instances older than the last seen instance per symbol. The inherently incremental and parallel qualities of the model, allow it to scale to any number of symbols as they appear in the sensory stream, and to transparently follow non-stationary distributions for existing symbols. These qualities are made possible in part by a novel Bayesian inference method, which can run Metropolis-Hastings incrementally on a data stream, and significantly outperforms particle filters in a Bayesian neural network application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 149, Part C, 3 February 2015, Pages 1270–1279
نویسندگان
, ,