کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407762 | 678168 | 2012 | 11 صفحه PDF | دانلود رایگان |

This paper considers system identification using domain partition based continuous piecewise linear neural network (DP-CPLNN), which is newly proposed. DP-CPLNN has the capability of representing any continuous piecewise linear (CPWL) function, hence its identification performance can be expected. Another attractive feature of DP-CPLNN is the geometrical property of its parameters. Applying this property, this paper proposes an identification method including domain partition and parameter training. In numerical experiments, DP-CPLNN with this method outperforms hinging hyperplanes and high-level canonical piecewise linear representation, which are two widely used CPWL models, showing the flexibility of DP-CPLNN and the effectiveness of the proposed algorithm in nonlinear identification.
Journal: Neurocomputing - Volume 77, Issue 1, 1 February 2012, Pages 167–177