کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407769 678168 2012 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral clustering: A semi-supervised approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Spectral clustering: A semi-supervised approach
چکیده انگلیسی

Recently, graph-based spectral clustering algorithms have been developing rapidly, which are proposed as discrete combinatorial optimization problems and approximately solved by relaxing them into tractable eigenvalue decomposition problems. In this paper, we first review the current existing spectral clustering algorithms in a unified-framework way and give a straightforward explanation about spectral clustering. We also present a novel model for generalizing the unsupervised spectral clustering to semi-supervised spectral clustering. Under this model, prior information given by some instance-level constraints can be generalized to space-level constraints. We find that (undirected) graph built on the enlarged prior information is more meaningful, hence the boundaries of the clusters are more correct. Experimental results based on toy data, real-world data and image segmentation demonstrate the advantages of the proposed model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 77, Issue 1, 1 February 2012, Pages 229–242
نویسندگان
, ,