کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407788 | 678170 | 2013 | 10 صفحه PDF | دانلود رایگان |

In this work, we analyze video data by learning both the spatial and temporal relationships among frames. For this purpose, the nonlinear dimensionality reduction algorithm, Laplacian Eigenmaps, is improved using a multiple kernel learning framework, and it is assumed that the data can be modeled by means of two different graphs: one considering the spatial information (i.e., the pixel intensity similarities) and the other one based on the frame temporal order. In addition, a formulation for automatic tuning of the required free parameters is stated, which is based on a tradeoff between the contribution of each information source (spatial and temporal). Moreover, we proposed a scheme to compute a common representation in a low-dimensional space for data lying in several manifolds, such as multiple videos of similar behaviors. The proposed algorithm is tested on real-world datasets, and the obtained results allow us to confirm visually the quality of the attained embedding. Accordingly, discussed approach is suitable for data representability when considering cyclic movements.
Journal: Neurocomputing - Volume 100, 16 January 2013, Pages 117–126