کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407821 678175 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Gender classification by combining clothing, hair and facial component classifiers
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Gender classification by combining clothing, hair and facial component classifiers
چکیده انگلیسی

In this paper, we propose a novel gender classification framework, which utilizes not only facial features, but also external information, i.e. hair and clothing. Instead of using the whole face, we consider five facial components: forehead, eyes, nose, mouth and chin. We also design feature extraction methods for hair and clothing; these features have seldom been used in previous work because of their large variability. For each type of feature, we train a single support vector machine classifier with probabilistic output. The outputs of these classifiers are combined using various strategies, namely fuzzy integral, maximal, sum, voting, and product rule. The major contributions of this paper are (1) investigating the gender discriminative ability of clothing information; (2) using facial components instead of the whole face to obtain higher robustness for occlusions and noise; (3) exploiting hair and clothing information to facilitate gender classification. Experimental results show that our proposed framework improves classification accuracy, even when images contain occlusions, noise, and illumination changes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 76, Issue 1, 15 January 2012, Pages 18–27
نویسندگان
, , ,