کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407827 678175 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Personalized topic-based tag recommendation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Personalized topic-based tag recommendation
چکیده انگلیسی

More and more content on the Web is generated by users. To organize this information and make it accessible via current search technology, tagging systems have gained tremendous popularity. Especially for multimedia content they allow to annotate resources with keywords (tags) which opens the door for classic text-based information retrieval. To support the user in choosing the right keywords, tag recommendation algorithms have emerged. In this setting, not only the content is decisive for recommending relevant tags but also the user's preferences.In this paper we introduce an approach to personalized tag recommendation that combines a probabilistic model of tags from the resource with tags from the user. As models we investigate simple language models as well as Latent Dirichlet Allocation. Extensive experiments on a real world dataset crawled from a big tagging system show that personalization improves tag recommendation, and our approach significantly outperforms state-of-the-art approaches.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 76, Issue 1, 15 January 2012, Pages 61–70
نویسندگان
, ,