کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407932 | 678237 | 2013 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Handwritten digit recognition using biologically inspired features
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Image recognition problems are usually difficult to solve using raw pixel data. To improve the recognition it is often needed some form of feature extraction to represent the data in a feature space. We use the output of a biologically inspired model for visual recognition as a feature space. The output of the model is a binary code which is used to train a linear classifier for recognizing handwritten digits using the MNIST and USPS datasets. We evaluate the robustness of the approach to a variable number of training samples and compare its performance on these popular datasets to other published results. We achieve competitive error rates on both datasets while greatly improving relatively to related networks using a linear classifier.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 99, 1 January 2013, Pages 575–580
Journal: Neurocomputing - Volume 99, 1 January 2013, Pages 575–580
نویسندگان
Ângelo Cardoso, Andreas Wichert,