کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
407946 | 678238 | 2011 | 7 صفحه PDF | دانلود رایگان |

The Gaussian kernel function implicitly defines the feature space of an algorithm and plays an essential role in the application of kernel methods. The parameter of Gaussian kernel function is a scalar that has significant influences on final results. However, until now, it is still unclear how to choose an optimal kernel parameter. In this paper, we propose a novel data-driven method to optimize the Gaussian kernel parameter, which only depends on the original dataset distribution and yields a simple solution to this complex problem. The proposed method is task irrelevant and can be used in any Gaussian kernel-based approach, including supervised and unsupervised machine learning. Simulation experiments demonstrate the efficacy of the obtained results. A user-friendly online calculator is implemented at: www.csbio.sjtu.edu.cn/bioinf/kernel/ for public use.
Journal: Neurocomputing - Volume 74, Issue 18, November 2011, Pages 3816–3822