کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
407996 678242 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Development of PI training algorithms for neuro-wavelet control on the synchronization of uncertain chaotic systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Development of PI training algorithms for neuro-wavelet control on the synchronization of uncertain chaotic systems
چکیده انگلیسی

This paper investigates a neuro-wavelet control (NWC) system to address the problem of synchronization control of uncertain chaotic systems. In this NWC system, a wavelet neural network (WNN) controller is the principal tracking controller designed to mimic the perfect control law and an auxiliary compensation controller is used to recover the residual approximation error so that the favorable synchronization can be achieved. Moreover, the proportional-integral (PI) training algorithms of the control system are derived from the Lyapunov stability theorem, which are utilized to update the adjustable parameters of WNN controller on-line for further assuring system stability and obtaining a fast convergence. In addition, to relax the requirement of unknown uncertainty bound, a bound estimation law is derived to estimate the uncertainty bound. Finally, some numerical simulations are presented to illustrate the effectiveness of the proposed control strategy. The simulation results demonstrate that the proposed NWC with PI training algorithms can synchronize the chaotic systems more accurately than the other control strategies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 17, October 2011, Pages 2797–2812
نویسندگان
, , ,