کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408004 678242 2011 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A SOM-based hybrid linear-neural model for short-term load forecasting
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A SOM-based hybrid linear-neural model for short-term load forecasting
چکیده انگلیسی

In this paper, a short-term load forecasting method is considered, which is based upon a flexible smooth transition autoregressive (STAR) model. The described model is a linear model with time varying coefficients, which are the outputs of a single hidden layer feedforward neural network. The hidden layer is responsible for partitioning the input space into multiple sub-spaces through multivariate thresholds and smooth transition between the sub-spaces. In this paper, we propose a new method to smartly initialize the weights of the hidden layer of the neural network before its training. A self-organizing map (SOM) network is applied to split the historical data dynamics into clusters, and the Ho–Kashyap algorithm is then used to obtain the separating planes' equations. Applied to the electricity markets, the proposed method is better able to model the smooth transitions between the different regimes, which are present in the load demand series because of market effects and season effects. We use data from three electricity markets to compare the prediction accuracy of the proposed method with traditional benchmarks and other recent models, and find our results to be competitive.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 17, October 2011, Pages 2874–2885
نویسندگان
, ,