کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408063 678242 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems
چکیده انگلیسی

This contribution proposes a powerful technique for two-class imbalanced classification problems by combining the synthetic minority over-sampling technique (SMOTE) and the particle swarm optimisation (PSO) aided radial basis function (RBF) classifier. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier's structure and the parameters of RBF kernels are determined using a PSO algorithm based on the criterion of minimising the leave-one-out misclassification rate. The experimental results obtained on a simulated imbalanced data set and three real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 17, October 2011, Pages 3456–3466
نویسندگان
, , , ,