کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408077 678242 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Exploiting constraint inconsistence for dimension selection in subspace clustering: A semi-supervised approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Exploiting constraint inconsistence for dimension selection in subspace clustering: A semi-supervised approach
چکیده انگلیسی

Selecting correct dimensions is very important to subspace clustering and is a challenging issue. This paper studies semi-supervised approach to the problem. In this setting, limited domain knowledge in the form of space level pair-wise constraints, i.e., must-links and cannot-links, are available. We propose a semi-supervised subspace clustering (S3C) algorithm that exploits constraint inconsistence for dimension selection. Our algorithm firstly correlates globally inconsistent constraints to dimensions in which they are consistent, then unites constraints with common correlating dimensions, and finally forms the subspaces according to the constraint unions. Experimental results show that S3C is superior to the typical unsupervised subspace clustering algorithm FINDIT, and the other constraint based semi-supervised subspace clustering algorithm SC-MINER.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 17, October 2011, Pages 3598–3608
نویسندگان
, , ,