کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408229 | 679010 | 2011 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning sequences of sparse correlated patterns using small-world attractor neural networks: An application to traffic videos
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The goal of this work is to learn and retrieve a sequence of highly correlated patterns using a Hopfield-type of attractor neural network (ANN) with a small-world connectivity distribution. For this model, we propose a weight learning heuristic which combines the pseudo-inverse approach with a row-shifting schema. The influence of the ratio of random connectivity on retrieval quality and learning time has been studied. Our approach has been successfully tested on a complex pattern, as it is the case of traffic video sequences, for different combinations of the involved parameters. Moreover, it has demonstrated to be robust with respect to highly variable frame activity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issues 14–15, July 2011, Pages 2361–2367
Journal: Neurocomputing - Volume 74, Issues 14–15, July 2011, Pages 2361–2367
نویسندگان
Mario González, David Dominguez, Ángel Sánchez,