کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408286 679015 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online multiple instance boosting for object detection
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Online multiple instance boosting for object detection
چکیده انگلیسی

Semi-supervised or unsupervised, incremental learning approaches based on online boosting are very popular for object detection. However, in the course of online learning, since the positive examples labelled by the current classifier may actually not be “correct”, the optimal weak classifier is unlikely to be selected by previous approaches. This would directly lead to a decline in algorithm performance. In this paper, we present an improved online multiple instance learning algorithm based on boosting (called OMILBoost) for object detection. It can pick out the real correct image patch around labelled example with high possibility and thus, avoid drifting problem effectively. Furthermore, our method shows high performance when dealing with partial occlusions. Effectiveness is experimentally demonstrated on six representative video sequences.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 10, May 2011, Pages 1769–1775
نویسندگان
, , , ,