کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408354 679025 2007 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive recurrent cerebellar model articulation controller for linear ultrasonic motor with optimal learning rates
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Adaptive recurrent cerebellar model articulation controller for linear ultrasonic motor with optimal learning rates
چکیده انگلیسی

In this study, an adaptive recurrent cerebellar model articulation controller (ARCMAC) is investigated for the motion control of linear ultrasonic motor (LUSM). The proposed ARCMAC has superior capability to the conventional cerebellar model articulation controller in efficient learning mechanism and dynamic response. The dynamic gradient descent method is adopted to online adjust the ARCMAC parameters. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of ARCMAC so that the stability of the system can be guaranteed. Furthermore, the variable optimal learning-rates are derived to achieve the fastest convergence of tracking error. Finally, the effectiveness of the proposed control system is verified by the experiments of LUSM motion control. Experimental results show that high-precision tracking response can be achieved by using the proposed ARCMAC.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2626–2637
نویسندگان
, ,