کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408378 679025 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using fuzzy logic to improve a clustering technique for function approximation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Using fuzzy logic to improve a clustering technique for function approximation
چکیده انگلیسی

Clustering algorithms have been successfully applied in several disciplines. One of those applications is the initialization of radial basis function (RBF) centers composing a neural network, designed to solve functional approximation problems. The Clustering for Function Approximation (CFA) algorithm was presented as a new clustering technique that provides better results than other clustering algorithms that were traditionally used to initialize RBF centers. Even though CFA improves performance against other clustering algorithms, it has some flaws that can be improved. Within those flaws, it can be mentioned the way the partition of the input data is done, the complex migration process, the algorithm's speed, the existence of some parameters that have to be set in order to obtain good solutions, and the convergence is not guaranteed. In this paper, it is proposed an improved version of this algorithm that solves the problems that its predecessor have using fuzzy logic successfully. In the experiments section, it will be shown how the new algorithm performs better than its predecessor and how important is to make a correct initialization of the RBF centers to obtain small approximation errors.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2853–2860
نویسندگان
, , , , , , ,