کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408379 | 679025 | 2007 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Methodology for long-term prediction of time series
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, a global methodology for the long-term prediction of time series is proposed. This methodology combines direct prediction strategy and sophisticated input selection criteria: k-nearest neighbors approximation method (k-NN), mutual information (MI) and nonparametric noise estimation (NNE). A global input selection strategy that combines forward selection, backward elimination (or pruning) and forward–backward selection is introduced. This methodology is used to optimize the three input selection criteria (k-NN, MI and NNE). The methodology is successfully applied to a real life benchmark: the Poland Electricity Load dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2861–2869
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 2861–2869
نویسندگان
Antti Sorjamaa, Jin Hao, Nima Reyhani, Yongnan Ji, Amaury Lendasse,