کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408394 | 679025 | 2007 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Improved GAP-RBF network for classification problems
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents the performance evaluation of the recently developed Growing and Pruning Radial Basis Function (GAP-RBF) algorithm for classification problems. Earlier GAP-RBF was evaluated only for function approximation problems. Improvements to GAP-RBF for enhancing its performance in both accuracy and speed are also described and the resulting algorithm is referred to as Fast GAP-RBF (FGAP-RBF). Performance comparison of FGAP-RBF algorithm with GAP-RBF and the Minimal Resource Allocation Network (MRAN) algorithm based on four benchmark classification problems, viz. Phoneme, Segment, Satimage and DNA are presented. The results indicate that FGAP-RBF produces higher classification accuracy with reduced computational complexity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 3011–3018
Journal: Neurocomputing - Volume 70, Issues 16–18, October 2007, Pages 3011–3018
نویسندگان
Runxuan Zhang, Guang-Bin Huang, N. Sundararajan, P. Saratchandran,