کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408411 679027 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A unified associative memory model based on external inputs of continuous recurrent neural networks
ترجمه فارسی عنوان
یک مدل حافظه وابسته یکپارچه بر اساس ورودی های خارجی شبکه های عصبی مستمر پیوسته است
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

A unified associative memory model with a novel method for designing associative memories is presented in this paper. Based on continuous recurrent neural networks, bipolar patterns inputted from external can cause the output of neural networks to be memorized patterns. In the method, two conditions relevant to external inputs are derived to ensure the network states converge to a stable interval, and an exponential stable criterion is proposed for the network being a bipolar associative memory with higher recall speed. By introducing a tunable slope activation function and considering time delay, the proposed model is general and can recall the memorized patterns in auto-associative and hetero-associative way, while higher robust and more flexible memory can be obtained through the proposed method. Experimental verification demonstrates the effectiveness and generalization of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 186, 19 April 2016, Pages 44–53
نویسندگان
, , , ,