کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408515 679031 2007 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ranking neurons for mining structure-activity relations in biological neural networks: NeuronRank
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Ranking neurons for mining structure-activity relations in biological neural networks: NeuronRank
چکیده انگلیسی

It is difficult to relate the structure of a cortical neural network to its dynamic activity analytically. Therefore we employ machine learning and data mining algorithms to learn these relations from sample random recurrent cortical networks and corresponding simulations. Inspired by the PageRank and the Hubs & Authorities algorithms, we introduce the NeuronRank algorithm, which assigns a source value and a sink value to each neuron in the network. We show its usage to extract structural features from a network for the successful prediction of its activity dynamics. Our results show that NeuronRank features can successfully predict average firing rates in the network, and the firing rate of output neurons reflecting the network population activity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 10–12, June 2007, Pages 1897–1901
نویسندگان
, , ,