کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408566 | 679033 | 2011 | 5 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Local Kernel Feature Analysis (LKFA) for object recognition
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes a new Local Kernel Feature Analysis (LKFA) method for object recognition. LKFA captures the nonlinear local relationship in an image via kernel functions. Different from traditional kernel methods for object recognition, the proposed method does not need to reserve the training samples. LKFA is designed to extract the eigenvalue features from the Hermite matrix of a local feature representation, which we have theoretically proven its robustness to noise and perturbations. Experiment results on palmprint and face recognitions demonstrated the effectiveness of the proposed LKFA that significantly improved the performance of the local feature based object recognition method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 74, Issue 4, January 2011, Pages 575–579
Journal: Neurocomputing - Volume 74, Issue 4, January 2011, Pages 575–579
نویسندگان
Baochang Zhang, Yongsheng Gao, Hong Zheng,