کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408568 | 679033 | 2011 | 10 صفحه PDF | دانلود رایگان |

An intelligent statistical approach is proposed for monitoring the performance of multivariate model predictive control (MPC) controller, which systematically integrates both the assessment and diagnosis procedures. Model predictive error is included into the monitored variable set and a 2-norm based covariance benchmark is presented. By comparing the data of a monitored operational period with the “golden” user-predefined one, this method can properly evaluate the performance of an MPC controller at the monitored operational stage. Characteristic direction information is mined from the operating data and the corresponding classes are built. The eigenvector angle is defined to describe the similarity between the current data set and the established classes, and an angle-based classifier is introduced to identify the root cause of MPC performance degradation when a poor performance is detected. The effectiveness of the proposed methodology is demonstrated in a case study of the Wood–Berry distillation column system.
Journal: Neurocomputing - Volume 74, Issue 4, January 2011, Pages 588–597