کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408594 | 679036 | 2007 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Variants of unsupervised kernel regression: General cost functions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We present an extension to unsupervised kernel regression (UKR), a recent method for learning of nonlinear manifolds, which can utilize leave-one-out cross-validation as an automatic complexity control without additional computational cost. Our extension allows us to incorporate general cost functions, by which the UKR algorithm can be made more robust or be tuned to specific noise models. We focus on Huber's loss and on the εε-insensitive loss, which we present together with a practical optimization approach. We demonstrate our method on both toy and real data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 70, Issues 7–9, March 2007, Pages 1289–1303
Journal: Neurocomputing - Volume 70, Issues 7–9, March 2007, Pages 1289–1303
نویسندگان
Stefan Klanke, Helge Ritter,