کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408638 | 679038 | 2010 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel Markov boundary based feature subset selection algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We aim to identify the minimal subset of random variables that is relevant for probabilistic classification in data sets with many variables but few instances. A principled solution to this problem is to determine the Markov boundary of the class variable. In this paper, we propose a novel constraint-based Markov boundary discovery algorithm called MBOR with the objective of improving accuracy while still remaining scalable to very high dimensional data sets and theoretically correct under the so-called faithfulness condition. We report extensive empirical experiments on synthetic data sets scaling up to tens of thousand variables.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 4–6, January 2010, Pages 578–584
Journal: Neurocomputing - Volume 73, Issues 4–6, January 2010, Pages 578–584
نویسندگان
Sérgio Rodrigues de Morais, Alex Aussem,