کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
408655 679038 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A general fuzzified CMAC based reinforcement learning control for ship steering using recursive least-squares algorithm
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A general fuzzified CMAC based reinforcement learning control for ship steering using recursive least-squares algorithm
چکیده انگلیسی

A general fuzzified cerebellar model articulation controller (GFCMAC) is proposed. The mapping of receptive field functions, the selection law of membership function and the learning algorithm are presented. Recursive least-squares temporal difference algorithm (RLS-TD) is deduced, which can use data efficiently with faster convergence and less computational burden. Using RLS-TD method a reinforcement learning structure based on GFCMAC is applied to ship steering control, as provides an efficient way for the improvement of ship steering control performance. The parameters of controller are online learned and adjusted. Simulation results show that the ship course can be properly controlled in case of the disturbances of wave and wind. It is demonstrated that the proposed algorithm is a promising alternative to conventional autopilots.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 4–6, January 2010, Pages 700–706
نویسندگان
, , ,