کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408761 | 679041 | 2006 | 4 صفحه PDF | دانلود رایگان |

Contour integration is a fundamental computation during image segmentation. Psychophysical evidence shows that contour integration is performed with high precision in widely differing situations. Therefore, the brain requires a reliable algorithm for extracting contours from stimuli. While according to statistics, contour integration is optimal when using a multiplicative algorithm, realistic neural networks employ additive operations. Here we discuss potential drawbacks of additive models. In particular, additive models require a subtle balance of lateral and afferent input for reliable contour detection. Furthermore, they erroneously detect an element belonging to several jittered contours instead of a perfectly aligned and thus more salient contour.
Journal: Neurocomputing - Volume 69, Issues 10–12, June 2006, Pages 1297–1300