کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
408835 | 679042 | 2009 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
ACO-based hybrid classification system with feature subset selection and model parameters optimization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This work presents a novel hybrid ACO-based classifier model that combines ant colony optimization (ACO) and support vector machines (SVM) to improve classification accuracy with a small and appropriate feature subset. To simultaneously optimize the feature subset and the SVM kernel parameters, the feature importance and the pheromones are used to determine the transition probability; the classification accuracy and the weight vector of the feature provided by the SVM classifier are both considered to update the pheromone. The experimental results indicate that the hybridized approach can correctly select the discriminating input features and also achieve high classification accuracy.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 73, Issues 1–3, December 2009, Pages 438–448
Journal: Neurocomputing - Volume 73, Issues 1–3, December 2009, Pages 438–448
نویسندگان
Cheng-Lung Huang,